

Louisiana Grade 8 GLEs addressed by STEM Field Trip

Science as Inquiry			
2.	Identify problems, factors, and questions that must	Using WWII as a scenario for real-world scientific	
	be considered in a scientific investigation (SI-M-A1)	application	
4.	Design, predict outcomes, and conduct experiments	STEM Field trip contains a contest involving students	
	to answer guiding questions (SI-M-A2)	designing, hypothesizing, and testing a vehicle	
5.	Identify independent variables, dependent variables,	Design contest stresses variables and the proper	
	and variables that should be controlled in designing an experiment (SI-M-A2)	method of change and testing	
27.	Recognize that science uses processes that involve a	Under the stress of WWII, flexibility was key to meet	
	logical and empirical, but flexible, approach to problem solving (SI-M-B1)	time constraints	
33.	Evaluate models, identify problems in design, and	Students evaluate WWII-era Higgins Boats, identify	
24	make recommendations for improvement (SI-M-B4)	limitations, and pose modifications/improvements	
34.	Recognize the importance of communication among scientists about investigations in progress and the	The Manhattan Project was the largest-scale example of scientific collaboration up to that point	
	work of others (SI-M-B5)		
	Physical Science		
1.	Determine that all atoms of the same element are	While examining the atomic bomb, students learn	
	similar to but different from atoms of other elements	how the properties of uranium made it suitable for	
	(PS-M-A2)	use in nuclear weaponry and energy.	
14.	Explain the relationships among force,	While determining the features that allow a glider to	
	mass, and acceleration (PS-M-B5)	fly, students look for design elements that meet	
		force, mass, and acceleration.	
Mathematics			
11.	Translate real-life situations that can be modeled by	Students are posed several real life situations where	
	linear or exponential relationships to algebraic	they must solve for x in finding production numbers,	
	expressions, equations, and inequalities (A-1-M) (A- 4-M) (A-5-M)	firing distances, and recruitment numbers.	
	4-1VI) (A-3-1VI)		
31.	Use area to justify the Pythagorean theorem and	Pythagorean theorem is used to calculate the range	
	apply the Pythagorean theorem and its converse in	of a target based on given points.	
	real-life problems (G-5-M) (G-7-M)		
46.	5	In determining the growth rate of bacteria, students	
	numerical patterns are linear/arithmetic (i.e., grows	determine whether it grows in a linear pattern or	
	by addition) or exponential/geometric (i.e., grows by multiplication) (P-1-M) (P-4-M)	exponentially.	
I			

