

Louisiana Grade 6 GLEs addressed by STEM Field Trip

Science as Inquiry		
2.	Identify problems, factors, and questions that must be	Using WWII as a scenario for real-world
	considered in a scientific investigation (SI-M-A1)	scientific application
4.	Design, predict outcomes, and conduct experiments to	STEM Field trip contains a contest involving
	answer guiding questions (SI-M-A2)	students designing, hypothesizing, and
		testing a vehicle
5.	Identify independent variables, dependent variables, and	Design contest stresses variables and the
	variables that should be controlled in designing an experiment	proper method of change and testing
	(SI-M-A2)	
27	Percentise that science uses processes that involve a logical	Under the stress of W/W/U flevibility was key
27.	and empirical, but flexible, approach to problem solving (SLM-	to meet time constraints
	B1)	
	51	
33.	Evaluate models, identify problems in design, and make	Students evaluate WWII-era Higgins Boats,
	recommendations for improvement (SI-M-B4)	identify limitations, and pose
		modifications/improvements
34.	Recognize the importance of communication among scientists	The Manhattan Project was the largest-scale
	about investigations in progress and the work of others (SI-M-	example of scientific collaboration up to that
	B5)	point
Physical Science		
35.	Describe and give examples of how all forms of energy may be	The vehicle for the design challenge is a
	classified as potential or kinetic energy (PS-M-C1)	lesson on potential and kinetic energy
16	Identify ways people can reuse results, and reduce the use of	Critical thinking activity in the Home Front
40.	resources to improve and protect the quality of life (SE M A6)	involves looking at rouse (rocycle (roduce
	resources to improve and protect the quality of the (SE-INI-AG)	during the War
	Mathematics	
17	Find solutions to 2-step equations with positive integer	Students will use equations to find the range
17.	solutions (e.g. $3x - 5 = 13$, $2x + 3x = 20$) (A-2-M)	of a target in the ocean
	30101013 (C.B., 3x - 3 - 13, 2x + 3x - 20) (A 2 M)	of a target in the occan.
20.	Calculate, interpret, and compare rates such as \$/lb., mpg,	Students will calculate inches per second in a
	and mph (M-1-M) (A-5-M)	design challenge and compare their results
26.	Apply concepts, properties, and relationships of points, lines,	Students calculate firing trajectories using
	line segments, rays, diagonals, circles, and right, acute, and	angles
	obtuse angles and triangles in real-life situations, including	
L	estimating sizes of angles (G-2-M) (G-5-M) (G-1-M)	
31.	Demonstrate an understanding of precision, accuracy, and	Students test their firing trajectories for
	error in measurement (D-2-M) (M-2-M)	precision in hitting a target. Students then
1		recalculate.

